데이터셋 상세
미국
MassiveYoungStar-FormingComplexStudyinIR&X-Rays:Mid-IRSourceCatalogs
Spitzer IRAC observations and stellar photometric catalogs are presented for the Massive Young star-forming complex Study in the Infrared and X-ray (MYStIX). MYStIX is a multi-wavelength census of young stellar members of 20 nearby (distances < 4 kpc), Galactic, star-forming regions (SFRs) that contain at least one O-type star. All regions have data available from the Spitzer Space Telescope consisting of GLIMPSE or other published catalogs for 11 regions and results of the authors' own photometric analysis of archival data for the remaining 9 regions. The authors also reduced the GLIMPSE data for the W 3 SFR using the aperture photometry method in order to compare the results obtained using the two methods (see Section 3.4.2 of the reference paper). The reference paper seeks to construct deep and reliable catalogs of sources from the Spitzer images. Mid-infrared study of these regions faces challenges of crowding and high nebulosity. These new catalogs typically contain fainter sources than existing Spitzer studies, which improves the match rate to Chandra X-ray sources that are likely to be young stars, but increases the possibility of spurious point-source detections, especially peaks in the nebulosity. IRAC color-color diagrams help distinguish spurious detections of nebular polycyclic aromatic hydrocarbon (PAH) emission from the infrared excess associated with dusty disks around young stars. The distributions of sources on the mid-infrared color-magnitude and color-color diagrams reflect differences between MYStIX regions, including astrophysical effects such as stellar ages and disk evolution. The GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) Survey is a Legacy Science Program of the Spitzer Space Telescope to study star formation in the disk of the Milky Way Galaxy. It contains six MYStIX regions - the Lagoon Nebula, the Trifid Nebula, NGC 6334, the Eagle Nebula, M 17, and NGC 6357 - within the 2-degree wide strip along the Galactic equator (GLIMPSE I and II data releases). Furthermore, Spitzer images and photometry for RCW 38 and NGC 3576 come from the Vela-Carina survey (Majewski et al. 2007, Spitzer Proposal 40791), using a similar observing strategy with mosaicking and photometric analysis as performed with the GLIMPSE pipeline. The authors obtained publicly available raw IRAC images from the Spitzer Heritage Archive for nine MYStIX regions without GLIMPSE coverage. The target list and details of the Astronomical Observation Requests (AORs) are provided in Table 1 of the reference paper. The camera spatial resolutions are FWHM = 1.6" to 1.9" from 3.6 to 8.0um. This table contains the combined IRAC source lists from the GLIMPSE photometry of W 3 and the aperture photometry of the 9 SFRs listed in Table 4, part 1 of the reference paper. This table was created by the HEASARC in February 2014 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/209/29">CDS Catalog J/ApJS/209/29</a> files table2.dat and table3.dat. To distinguish from which table a source originated, the HEASARC has added a parameter called table_number listing the number of the source table, 2 or 3. This is a service provided by NASA HEASARC .
데이터 정보
연관 데이터
MassiveYoungStar-FormingComplexStdyinIR&X-Rays:MYStIXProbComplexMbrs
공공데이터포털
The Massive Young Star-forming complex Study in Infrared and X-rays (MYStIX) project requires samples of young stars that are likely members of 20 nearby Galactic massive star-forming regions. Membership is inferred from statistical classification of X-ray sources, from detection of a robust infrared excess that is best explained by circumstellar dust in a disk or infalling envelope and from published spectral types that are unlikely to be found among field stars. This table contains the MYStIX membership lists, which total 31,549 probable complex members. In their reference paper, the authors describe in detail the statistical classification of X-ray sources via a "Naive Bayes Classifier". These membership lists provide the empirical foundation for subsequent MYStIX science studies. The MYStIX project, described by Feigelson et al. (2013, ApJS, 209, 26), seeks to identify and study samples of young stars in 20 nearby (0.4 < D < 3.6kpc) Galactic massive star-forming regions (MSFRs). These samples are derived using X-ray data from the Chandra X-ray Observatory, near-infrared (NIR) photometry from the United Kingdom InfraRed Telescope (UKIRT) and from the Two Micron All Sky Survey (2MASS), mid-infrared (MIR) photometry from the Spitzer Space Telescope, and from published spectroscopically-identified massive stars. The purpose of this study is to describe the authors' efforts to minimize contaminants in the MYStIX catalogs of young stars. They refer to these latter objects as the "MYStIX Probable Complex Members" or MPCMs. This table contains the combined MPCM catalog for all 20 of the MYStIX MSFRs. This MPCM catalog is the union of three sets of probable members identified by three different established methods for identifying young stars (see Feigelson et al. 2013, ApJS, 209, 26, Fig. 3). Most of the X-ray information on the MPCMs (with the exception of the X-ray luminosities and absorbing column densities obtained using XPHOT) was produced by the ACIS Extract (AE) software package (Broos et al. 2010, ApJ, 714, 1582 and 2012, Astrophysics Source Code Library, 1203.001). The AE software and User's Guide are available at http://www.astro.psu.edu/xray/acis/acis_analysis.html. X-ray quantities using the 'fb' prefix are for the full or total energy band from 0.5 - 8.0 keV, those using the 'sb' prefix are for the soft band from 0.5 - 2.0 keV, and those using the 'hb' prefix are for the hard band from 2.0 - 8.0 keV. L. K. Townsley and P. S. Broos (2013, in preparation) and Kuhn et al. (2013, ApJS, 209, 27) identify a few very bright X-ray sources in each region that suffer from a type of instrumental non-linearity known as photon pile-up (http://cxc.harvard.edu/ciao/why/pileup_intro.html); X-ray properties reported for those sources are biased and should be used with caution. This table was created by the HEASARC in February 2014 based on CDS Catalog J/ApJS/209/32 file mpcm.dat. This is a service provided by NASA HEASARC .
MassiveYoungStar-FormingComplexStudyinIR&X-Rays:X-RaySourceCatalog
공공데이터포털
The Massive Young Star-forming complex Study in Infrared and X-ray (MYStIX) uses data from the Chandra X-Ray Observatory to identify and characterize the young stellar populations in 20 Galactic (d < 4 kpc) massive star-forming regions. In this present study, the X-ray analysis for Chandra ACIS-I observations of 10 of the MYStIX fields is described, and a catalog of > 10,000 X-ray sources is presented in this table. In comparison to other published Chandra source lists for the same regions, the number of MYStIX-detected faint X-ray sources in a region is often doubled. While the higher catalog sensitivity increases the chance of false detections, it also increases the number of matches to infrared stars. X-ray emitting contaminants include foreground stars, background stars, and extragalactic sources. The X-ray properties of sources in these classes are discussed in the reference paper. The X-ray observations were made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This array of four CCD detectors subtends 17' x 17' on the sky. The number of different Chandra pointings for each region, the total exposures for these pointings, and details of how the observations were taken are provided in Table 1 of the reference paper. Overall, 29 Chandra ObsIDs are included with typical integration times for a pointing of 40 - 100 ks, sufficient to detect most OB stars and lower-mass pre-main-sequence stars down to ~ 0.5 - 1 solar masses for the MYStIX regions. The 10 MYStIX MSFRs treated herein are listed in Table 2 of the reference paper. The data were acquired from the Chandra Data Archive from 2001 Jan to Mar 2008 for 10 MYStIX fields (the Flame Nebula, RCW 36, NGC 2264, the Rosette Nebula, the Lagoon Nebula, NGC 2362, DR 21, RCW 38, Trifid Nebula and NGC 1893). The X-ray photometry is from Broos et al. (2010, ApJ, 714, 1582; ACIS Extract); see also the CCCP, Broos et al. (2011, ApJS, 194, 2). The source significance quantities (fb_prob_no_src, sb_prob_no_src, hb_prob_no_src and prob_no_src_min) are computed using a subset of each source's extractions chosen to maximize significance (Broos et al. 2010, ApJ, 714, 1582, Section 6.2). The source position and positional uncertainty quantities are computed using a subset of each source's extractions chosen to minimize the position uncertainty (Broos et al. 2010, ApJ, 714, 1582, Sections 6.2 and 7.1). All other quantities are computed using a subset of each source's extractions chosen to balance the conflicting goals of minimizing photometric uncertainty and of avoiding photometric bias (Broos et al. 2010, ApJ, 714, 1582, Sections 6.2 and 7). The observed and absorption-corrected energy fluxes and their associated errors and the estimated hydrogen column densities and their uncertainties are derived using non-parametric procedures (XPHOT, Getman et al. 2010, ApJ, 708, 1760). XPHOT assumes the X-ray spectral shapes of young, low-mass stars, which come from coronal X-ray emission. XPHOT quantities will therefore be unreliable for high-mass stars, for which X-ray emission is associated with the stellar wind. This table was created by the HEASARC in January 2014 based on CDS Catalog J/ApJS/209 27 file xmystix.dat. This is a service provided by NASA HEASARC .
MassiveYoungStar-FormingComplexStudyinIR&X-Rays:IR-ExcessSources
공공데이터포털
The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes with distances between 0.4 and 3.6 kpc. Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. In this particular study, the authors present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M 17). The authors combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and to isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying their methodology consistently across 18 of the target complexes, they produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8,686 probable stellar members of the MYStIX target complexes. They also classify the SEDs of 9,365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MYStIX project, described by Feigelson et al. (2013, ApJS, 209, 26), provides a comprehensive, parallel study of 20 Galactic massive star-forming regions. The basic input data for the MIRES Catalog were near-IR (NIR) and mid-IR (MIR) photometric catalogs. The authors also used NIR and MIR images and mosaics for visualizing the point-source populations with respect to various nebular structures. They provide high-level descriptions of each input catalog in section 2 of the reference paper. This table contains the MYStIX IRE Source (MIRES) Catalog comprising IR data on 20,719 sources, including 8,686 probable stellar members of the MYStIX target complexes, viz., massive star-forming regions (MSFRs), which was given in Table 2 of the reference paper. It does not include the IR data of the above-mentioned 9,365 IR counterparts to MYStIX X-ray sources (the SED Classification of IR Counterparts to MYStIX X-ray sources (SCIM-X Catalog) that were listed in Table 7 of the reference paper. This table was created by the HEASARC in February 2014 based on CDS Catalog J/ApJS/209/31 file table2.dat. This is a service provided by NASA HEASARC .
W 40 Star-Forming Region Chandra X-Ray Point Source Catalog
공공데이터포털
The young stellar cluster illuminating the W40 H II region, one of the nearest massive star-forming regions (SFRs), has been observed with the ACIS detector on board the Chandra X-ray Observatory. Due to its high obscuration, this is a poorly studied stellar cluster with only a handful of bright stars visible in the optical band, including three OB stars identified as primary excitation sources. The authors detect 225 X-ray sources, of which 85% are confidently identified as young stellar members of the region. Two potential distances of the cluster, 260 pc and 600 pc, are used in the paper. Supposing the X-ray luminosity function of SFRs to be universal, it supports a 600 pc distance as a lower limit for W40 and a total population of at least 600 stars down to 0.1 Msun under the assumption of a coeval population with a uniform obscuration. In fact, there is strong spatial variation in Ks-band-excess disk fraction and non-uniform obscuration due to a dust lane that is identified in absorption in optical, infrared, and X-ray. The dust lane is likely part of a ring of material which includes the molecular core within W40. In contrast to the likely ongoing star formation in the dust lane, the molecular core is inactive. The star cluster has a spherical morphology, an isothermal sphere density profile, and mass segregation down to 1.5 Msun. However, other cluster properties, including a <= 1 Myr age estimate and ongoing star formation, indicate that the cluster is not dynamically relaxed. X-ray diffuse emission and a powerful flare from a young stellar object are also reported in the reference paper. This table was created by the HEASARC in March 2011 based on electronic versions of Tables, 1, 2 and 4 of the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .
Massive Star-Forming Regions Omnibus X-Ray Catalog
공공데이터포털
This table contains the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc, and comprises Table 3 of the reference paper. In their paper, the authors show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, they have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics. The Chandra observations used for the Massive Star-forming Regions Omnibus X-ray Catalog (MOXC) are summarized in Table 2 of the reference paper and have dates ranging from 2000-04-03 to 2013-01-31 for the 12 MSFRs: the 7 MYStIX targets NGC 6334, NGC 6357, M 16, M 17, W 3, W 4 and NGC 3576, and the 5 "beyond-MYStIX" targets G333.6-0.2, W 51A, G29.96-0.02, NGC 3603 and 30 Doradus. A similar table to MOXC for other MYStIX targets was presented by Kuhn et al. (2013, ApJS, 209, 27, available as the HEASARC MYSTIXXRAY table). The main difference between that table and the MOXC version is that the present authors have chosen to omit absorption-corrected X-ray source luminosities from the XPHOT algorithm (Getman et al. 2010, ApJ, 708, 1760) herein, because those quantities are given in Broos et al. (2013, ApJS, 209, 32, available as the HEASARC MYSTIXMPCM table) for relevant MYStIX X-ray sources (those classified as pre-main sequence stars). For beyond-MYStIX targets, the authors chose to postpone XPHOT calculations until the X-ray sources were classified, since XPHOT estimates are only appropriate for pre-MS stars. The XPHOT code is available (Getman et al. 2012, Astrophysics Source Code Library, record ascl.soft12002) if others wish to use it on MOXC sources. All photometric quantities in this table are apparent (not corrected for absorption). The HEASARC has used prefixes 'fb_', 'sb_' and 'hb_' (replacing the suffixes '_t', '_s' and '_h' used in the reference paper) on the names of the X-ray photometric quantities which designate the full (total, 0.5 - 8 keV), soft (0.5 - 2.0 keV) and hard (2-8 keV) energy bands. Correction for finite extraction apertures is applied to the ancillary reference file (ARF) calibration products (see Broos et al. 2010, ApJ, 714, 1582, Section 5.3); the total_counts and counts quantities characterize the extraction and are not aperture-corrected. The only calibrated quantities presented are the apparent photon fluxes, in units of photon cm-2 s-1 (see Broos et al. 2010, ApJ, 714, 1582, Section 7.4), and estimates for the apparent energy fluxes, in units of erg cm-2 s-1 (Getman et al. 2010, ApJ, 708, 1760). This table was created by the HEASARC in October 2014 based on CDS Catalog J/ApJS/213/1 files table3.dat (the MOXC X-ray Source Catalog) and table6.dat (the list of MOXC sources in previously published Chandra catalogs). This is a service provided by NASA HEASARC .
Star Formation in Nearby Clouds (SFiNCs) X-Ray Source Catalog
공공데이터포털
The Star Formation in Nearby Clouds (SFiNCs) project is aimed at providing a detailed study of the young stellar populations and of star cluster formation in the nearby 22 star-forming regions (SFRs) for comparison with our earlier MYStIX survey of richer, more distant clusters. As a foundation for the SFiNCs science studies, in the reference paper homogeneous data analyses of the Chandra X-ray and Spitzer mid-infrared archival SFiNCs data are described, and the resulting catalogs of over 15,300 X-ray and over 1,630,000 mid-infrared point sources are presented. On the basis of their X-ray/infrared properties and spatial distributions, nearly 8500 point sources have been identified as probable young stellar members of the SFiNCs regions. Compared to the existing X-ray/mid-infrared publications, the SFiNCs member list increases the census of YSO members by 6%-200% for individual SFRs and by 40% for the merged sample of all 22 SFiNCs SFRs. Sixty-five X-ray observations of the 22 SFiNCs SFRs made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS) were extracted from the Chandra archive (spanning from 2000 January to 2015 April). See Tables 1 and 2 of the reference paper for the list of SFRs and the log of Chandra ACIS observations, respectively. The final Chandra-ACIS catalog for the 22 SFiNCs SFRs comprises 15,364 X-ray sources (presented in Tables 3 and 4 and section 3.2 of the reference paper, and the contents of this HEASARC table, SFINCSXRAY). To obtain MIR photometry for X-ray objects and to identify and measure MIR photometry for additional non-Chandra disky stars that were missed in previous studies of the SFiNCs regions (typically faint YSOs), the authors have reduced the archived Spitzer-IRAC data by homogeneously applying the MYStIX-based Spitzer-IRAC data reduction methods of Kuhn et al. (2013, ApJS, 209, 29) to the 423 Astronomical Object Request (AORs) data sets for the 22 SFiNCs SFRs (Table 5 of the reference paper). As in MYStIX, the SFiNCs IRAC source catalog retains all point sources with the photometric signal-to-noise ratio > 5 in both [3.6] and [4.5] um channels. This catalog covers the 22 SFiNCs SFRs and their vicinities on the sky and comprises 1,638,654 IRAC sources with available photometric measurements for 100%, 100%, 29%, and 23% of these sources in the 3.6, 4.5, 5.8, and 8.0um bands, respectively (see table 6 and section 3.4 of the reference paper). Source position cross-correlations between the SFiNCs Chandra X-ray source catalog and an IR catalog, either the "cut-out" IRAC or 2MASS, were made using the steps described in section 3.5 of the reference paper. Tables 7 and 8 of the reference paper provide the list of 8,492 SFiNCs probable cluster members (SPCMs) and their main IR and X-ray properties (see section 4 of the reference paper): this list as available at the HEASARC as the SFINCSPCM table (q.v.). This table was created by the HEASARC in September 2017 based on the CDS Catalog J/ApJS/229/28 files table3.dat (the list of SFiNCs X-ray sources and their basic properties) and table4.dat (the list of SFiNCs X-ray source fluxes). This is a service provided by NASA HEASARC .
CatalogofGalaxiesObservedbytheEinsteinObservatoryIPC&HRI
공공데이터포털
RCW 38 Chandra X-Ray Point Source Catalog 2
공공데이터포털
This table contains some of the results from a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 micron) is combined with Two Micron All Sky Survey (2MASS) near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. The authors identify 624 YSOs: 23 class 0/I and 90 flat spectrum (FS) protostars, 437 class II stars, and 74 class III stars. They also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. The authors find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, NH and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. The authors posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains. This table contains the list of 536 X-ray sources found in the Chandra data using a three-pass method with the CIAO 3.4 Wavdetect tool. This table was created by the HEASARC in January 2012 based on an electronic version of Table 2 from the reference paper which was obtained from the ApJ website. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
LkH-alpha 101 Star Formation Region Chandra X-Ray Point Source Catalog
공공데이터포털
This table contains some of the results from a multi-wavelength study of a partially embedded region of star formation centered on the Herbig Be star LkH-alpha 101. Using two 40 ks Chandra observations, The authors have detected 213 X-ray sources in the ~ 17' x 17' ACIS-I field. They combine the X-ray data with Two Micron All Sky Survey (2MASS) near-IR observations and Spitzer Space Telescope (SST) IRAC and MIPS 24-micron observations to obtain a complete picture of the cluster. A total of 158 of the X-ray sources have infrared counterparts. Of these, the authors find nine protostars, 48 Class II objects, five transition objects, and 72 Class III objects. From the Spitzer data, they identify an additional 10 protostars, 53 Class II objects, and four transition disk candidates which are not detected by Chandra. (These objects are not included in this HEASARC table which contains the multi-wavelength data for only the 213 detected X-ray sources). The authors obtained optical spectra of a sample of both X-ray-detected and non-X-ray-detected objects. Combining the X-ray, Spitzer, and spectral data, they obtain independent estimates of cluster distance and the total cluster size - excluding protostars. The authors obtain consistent distance estimates of 510 (+100,-40) pc and a total cluster size of 255 (+50,-25) stars. They find the Class II:III ratio is about 5:7 with some evidence that the Class III sources are spatially more dispersed. The cluster appears very young with three sites of active star formation and a median age of about 1 Myr. The field was observed by Chandra on 2005 March 6 starting at 17:16 UT for 40.2 ks of total time and 39.6 ks of the so-called good time (Chandra ObsID 5429). It was observed again on 2005 March 8 starting at 17:43 UT for essentially the same duration (Chandra ObsID 5428). The ACIS was used in the nominal imaging array (chips I0-I3) which provides a field of view of approximately 17' x 17'. The aimpoint was at RA, Dec = 04:30:14.4, +35:16:22.2 (J2000.0) with a roll angle of 281 degrees. In addition, the S2 and S3 chips were active; however, the analysis of these data is not presented here. For purposes of point-source detection, the data from the two observations were merged into a single event list following established CIAO procedures to create a merged event list. To identify point sources, photons with energies below 300 eV and above 8.0 keV were filtered out from this merged event list. This excluded energies which generally lack a stellar contribution. By filtering the data as described, contributions from hard, non-stellar sources such as X-ray binaries and active galactic nuclei (AGNs) are attenuated, as is noise. A monochromatic exposure map was generated in the standard way using an energy of 1.49 keV which is a reasonable match to the expected peak energy of the stellar sources and the Chandra mirror transmission. The CIAO tool WavDetect was then run on a series of flux-corrected images binned by 1, 2, and 4 pixels. The output source lists were combined and this resulted in the detection of 231 sources. The authors defined false detections as any sources with < 4 net counts or any sources more than 5' off-axis with < 7 net counts. By this definition, 18 of the 231 detections were rejected as false detections. A post facto check confirmed that none of these (spurious) sources had an infrared counterpart. This table was created by the HEASARC in July 2010 based on the versions of Tables 1, 2, 3, 7 and 9 from the paper which were obtained from the electronic ApJ web site. This is a service provided by NASA HEASARC .
COSMOS X-ray Group Catalog - Gozaliasl (2019)
공공데이터포털
This is the revised catalogue of 247 X-ray groups of galaxies in the 2 square degree COSMOS field with M200c = 8x10^12 - 3x10^14 M_sun at redshift range of 0.08 <= z < 1.53. The main revisions are on the group X-ray centre using the combined data of the XMM-Newton and Chandra and the redshift based on the COSMOS2015 photometric redshifts catalogue (Laigle et al. 2016) and the COSMOS spectroscopic redshifts catalogue (Hasinger et al. 2018).