GRIP DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1
공공데이터포털
The GRIP DC-8 Meteorological measurement System (MMS) dataset was collected by the Meteorological Measurement System (MMS), which provides high-resolution, accurate meteorological parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). The MMS hardware consists of 3 major systems: an air-motion sensing system to measure air velocity with respect to the aircraft, an aircraft-motion sensing system to measure the aircraft velocity with respect to the Earth, and a data acquisition system to sample, process, and record the measured quantities. In addition to making the in flight measurements, a major and necessary step is the post mission systematic calibration and data processing. The primary data set consists of 1 Hz meteorological data (P, T, 3D winds). The secondary data set at 20 Hz includes the meteorological data and additional parameters such as Potential-Temperature; True-Air-Speed; aircraft GPS position, velocities, attitudes, acceleration and air flow data (angle-of-attack, sideslip) from August 10, 2010 through September 25, 2010. The Genesis and Rapid Intensification Processes (GRIP) experiment was a NASA Earth science field experiment. The major goal was to better understand how tropical storms form and develop into major hurricanes. NASA used the DC-8 aircraft, the WB-57 aircraft and the Global Hawk Unmanned Airborne System (UAS), configured with a suite of in situ and remote sensing instruments that were used to observe and characterize the lifecycle of hurricanes.
CAMEX-3 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1
공공데이터포털
The CAMEX-3 Meteorological Measurement System (MMS) dataset consists of atmospheric parameters measured by the MMS instruments aboard NASA DC-8 aircraft. The MMS consists of three major systems: an air-motion sensing system to measure air velocity with respect to the aircraft, an aircraft-motion sensing system to measure the aircraft velocity with respect to the Earth, and a data acquisition system to sample, process, and record the measured quantities. The MMS dataset consits of atmospheric pressure, temperature, and wind measurements collected during the CAMEX-3 mission to study hurricanes over the land and ocean in the U.S Gulf of America, Caribbean, and Western Atlantic Ocean.
CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1
공공데이터포털
The CAMEX-4 DC-8 Meteorological Measurement System (MMS) was collected by the MMS, which consists of three major systems: an air-motion sensing system to measure air velocity with respect to the aircraft, an aircraft-motion sensing system to measure the aircraft velocity with respect to the Earth, and a data acquisition system to sample, process, and record the measured quantities. The MMS data was collected during the CAMEX-4 campaign to study physical properties of atmospheric temperature.
NAMMA DC-8 DROPSONDE V1
공공데이터포털
The NAMMA DC-8 Dropsonde dataset were collected by the DC-8 dropsonde system, which uses an integrated, highly accurate, GPS-located atmospheric profiling dropsonde measuring and recording current atmospheric conditions in a vertical column below the aircraft. hese dropsondes, also known as dropwindsondes or parachute radiosondes, are small, lightweight (less than 1 lb) cylindrical instruments that fall freely through the atmosphere, slowed somewhat by a small inflatable parachute. These data files were generated during support of the NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign, a field research investigation sponsored by the Science Mission Directorate of the National Aeronautics and Space Administration (NASA). This mission was based in the Cape Verde Islands, 350 miles off the coast of Senegal in west Africa. Commencing in August 2006, NASA scientists employed surface observation networks and aircraft to characterize the evolution and structure of African Easterly Waves (AEWs) and Mesoscale Convective Systems over continental western Africa, and their associated impacts on regional water and energy budgets.
Alpha Jet Atmopsheric eXperiment Meteorological Measurement System (MMS) Data
공공데이터포털
The Alpha Jet Atmospheric eXperiment (AJAX) is a partnership between NASA's Ames Research Center and H211, L.L.C., facilitating routine in-situ measurements over California, Nevada, and the coastal Pacific in support of satellite validation. The standard payload complement includes rigorously-calibrated ozone (O3), formaldehyde (HCHO), carbon dioxide (CO2), and methane (CH4) mixing ratios, as well as meteorological data including 3-D winds. Multiple vertical profiles (to ~8.5 km) can be accomplished in each 2-hr flight. The AJAX project has been collecting trace gas data on a regular basis in all seasons for over a decade, helping to assess satellite sensors' health and calibration over significant portions of their lifetimes, and complementing surface and tower-based observations collected elsewhere in the region.AJAX supports NASA's Orbiting Carbon Observatory (OCO-2/3) and Japan's Greenhouse Gases Observing Satellite (GOSAT) and GOSAT-2, and collaborates with many other research organizations (e.g. California Air Resources Board (CARB), NOAA, United States Forest Service (USFS), Environmental Protection Agency (EPA)). AJAX celebrated its 200th science flight in 2016, and previous studies have investigated topics as varied as stratospheric-to-tropospheric transport, forest fire plumes, atmospheric river events, long-range transport of pollution from Asia to the western US, urban outflow, and emissions from gas leaks, oil fields, and dairies.
PEM West A In-Situ DC-8 Meteorology and Navigation Data
공공데이터포털
PEM-West-A_MetNav_AircraftInSitu_DC8_Data is the in situ meteorology and navigation data collected onboard the DC-8 aircraft during the Pacific Exploratory Mission (PEM) West A suborbital campaign. Data from the DC-8 Data Acquisition and Distribution System is featured in this collection. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1
공공데이터포털
The NAMMA Lidar Atmospheric Sensing Experiment (LASE) dataset used the LASE system using the Differential Absorption Lidar (DIAL) system was operated during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign to gather water vapor mixing ratio and aerosol scattering ratio (815 nm) profiles. Other derived parameters include: relative humidity, equivalent potential temperature, virtual potential temperature, precipitable water vapor profiles, aerosol backscatter, aerosol extinction, and aerosol optical thickness profiles (815 nm). Aerosol data are reported as atmospheric scattering ratios on a logarithmic scale. Water vapor data are reported as mixing ratios (g/kg) on both a linear and logarithmic scale. LASE was operated from the NASA DC-8 aircraft during 14 NAMMA campaign flights between August 15 and September 12, 2006.