GRIP DC-8 DROPSONDE V3
공공데이터포털
The GRIP DC-8 Dropsonde V3 dataset consists of atmospheric pressure, dry-bulb temperature, dew point temperature, relative humidity, wind direction, wind speed, and fall rate measurements taken during 16 research flights during the Genesis and Rapid Intensification Processes (GRIP) campaign from August 17, 2010 to September 22, 2010. The GRIP campaign was conducted to better understand how tropical storms form and how these storms develop into major hurricanes. The DC-8 Airborne Vertical Atmospheric Profiling System (AVAPS) deploys integrated, highly accurate, GPS-located atmospheric profiling dropsondes to measure and record current atmospheric conditions in a vertical column below the aircraft. The dropsondes are ejected from a tube in the underside of the DC-8 aircraft. As the dropsonde descends to the surface via a parachute, it continuously measures and transmits data to the aircraft using a 400 MHz meteorological band telemetry link. Pressure, temperature and relative humidity, as well as GPS-based wind data were collected from 328 dropsondes. These Dropsonde data are in ASCII-csv file format.
SOLVE I DC-8 Analysis Model Data
공공데이터포털
SOLVE1_Analysis_DC8_Data contains modeled trajectories and meteorological data along the flight path for the DC-8 aircraft collected during the SAGE III Ozone Loss and Validation Experiment (SOLVE). Data collection for this product is complete.The SOLVE campaign was a NASA multi-program effort of the Upper Atmosphere Research Program (UARP), Atmospheric Effects of Aviation Project (AEAP), Atmospheric Chemistry Modeling and Analysis Program (ACMAP) and Earth Observing System (EOS) of NASA’s Earth Science Enterprise (ESE). SOLVE’s primary objective was for calibrating and validating the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements, while examining the processes that controlled ozone levels at a mid- to high-latitude range. The major goal of SAGE III was to quantitatively assess ozone loss at high latitudes. SOLVE was a two-phase experiment, the first phase, SOLVE, occurred during the fall of 1999 through the spring of 2000. The second phase, SOLVE II, occurred during the winter of 2003.SOLVE took place in the Arctic high-latitude region during the winter. The polar ozone depletion processes cause by human-produced chlorine and bromine are most active in mid-to-late winter and early spring in the high Arctic. In order to conduct this validation experiment, NASA deployed the NASA ER-2 aircraft and NASA DC-8 aircraft. The ER-2 measured a variety of atmospheric data, including ozone (O3), H2O, CO2, ClONO2, HCl, ClO/BrO, and Cl2O2. The DC-8 aircraft measured ozone, ClO/BrO, and aerosol, among other atmospheric data. SOLVE also utilized balloon platforms, ground-based instruments, and collaborations with the German Aerospace Center’s (DLR) FALCON aircraft equipped with the OLEX Lidar to achieve the mission objectives. Overall, the campaign had 28 flights, with SOLVE featuring 17 total flights among the different aircrafts and SOLVE II featuring 11 flights.
SOLVE II DC-8 Analysis Model Data
공공데이터포털
SOLVE2_Analysis_DC8_Data contains modeled trajectories and meteorological data along the flight path for the DC-8 aircraft collected during the SAGE III Ozone Loss and Validation Experiment II (SOLVE II). Data collection for this product is complete.The SOLVE campaign was a NASA multi-program effort of the Upper Atmosphere Research Program (UARP), Atmospheric Effects of Aviation Project (AEAP), Atmospheric Chemistry Modeling and Analysis Program (ACMAP) and Earth Observing System (EOS) of NASA’s Earth Science Enterprise (ESE). SOLVE’s primary objective was for calibrating and validating the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements, while examining the processes that controlled ozone levels at a mid- to high-latitude range. The major goal of SAGE III was to quantitatively assess ozone loss at high latitudes. SOLVE was a two-phase experiment, the first phase, SOLVE, occurred during the fall of 1999 through the spring of 2000. The second phase, SOLVE II, occurred during the winter of 2003.SOLVE took place in the Arctic high-latitude region during the winter. The polar ozone depletion processes cause by human-produced chlorine and bromine are most active in mid-to-late winter and early spring in the high Arctic. In order to conduct this validation experiment, NASA deployed the NASA ER-2 aircraft and NASA DC-8 aircraft. The ER-2 measured a variety of atmospheric data, including ozone (O3), H2O, CO2, ClONO2, HCl, ClO/BrO, and Cl2O2. The DC-8 aircraft measured ozone, ClO/BrO, and aerosol, among other atmospheric data. SOLVE also utilized balloon platforms, ground-based instruments, and collaborations with the German Aerospace Center’s (DLR) FALCON aircraft equipped with the OLEX Lidar to achieve the mission objectives. Overall, the campaign had 28 flights, with SOLVE featuring 17 total flights among the different aircrafts and SOLVE II featuring 11 flights.
PEM West A In-Situ DC-8 Meteorology and Navigation Data
공공데이터포털
PEM-West-A_MetNav_AircraftInSitu_DC8_Data is the in situ meteorology and navigation data collected onboard the DC-8 aircraft during the Pacific Exploratory Mission (PEM) West A suborbital campaign. Data from the DC-8 Data Acquisition and Distribution System is featured in this collection. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
CAMEX-4 DC-8 DROPSONDE SYSTEM V1
공공데이터포털
The CAMEX-4 DC-8 Dropsonde System dataset was collected by the DC-8 Dropsonde System (D8D) uses dropwindsonde and Global Positioning System (GPS) receivers to measure the atmospheric state parameters (temperature, humidity, windspeed/direction, pressure, and location in 3 dimensional space during the sonde's descent once each half second. Measurements are transmitted to the aircraft from the time of release until impact with the ocean's surface.
NAMMA DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1
공공데이터포털
The NAMMA DC-8 Meteorological Measurement System (MMS) dataset used the MMS, which consists of three major systems: an air-motion sensing system to measure air velocity with respect to the aircraft, an aircraft-motion sensing system to measure the aircraft velocity with respect to the Earth, and a data acquisition system to sample, process, and record the measured quantities. The air-motion system consists of two airflow-angle probes, three total temperature probes each with a different response time, a pitot-static pressure probe, and a dedicated static pressure system. All probes and sensors are judiciously located at specific positions of the fuselage. The aircraft-motion sensing system consists of an embedded GPS ring laser inertial navigation system, and a multiple-antenna GPS attitude reference system. Customized software was developed to control, sample, and process all sensors and hardware. These data files were generated during support of the NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign, a field research investigation sponsored by the Science Mission Directorate of the National Aeronautics and Space Administration (NASA). This mission was based in the Cape Verde Islands, 350 miles off the coast of Senegal in west Africa. Commencing in August 2006, NASA scientists employed surface observation networks and aircraft to characterize the evolution and structure of African Easterly Waves (AEWs) and Mesoscale Convective Systems over continental western Africa, and their associated impacts on regional water and energy budgets.
CPEX-AW Dropsonde Data
공공데이터포털
CPEXAW-Dropsondes_1 is the dropsonde data files collected during the Convective Processes Experiment - Aerosols & Winds (CPEX-AW). Data collection for this product is complete.The Convective Processes Experiment – Aerosols & Winds (CPEX-AW) campaign was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix. CPEX-AW is a follow-on to the Convective Processes Experiment (CPEX) field campaign which took place in the summer of 2017. In addition to joint calibration/validation of ADM-AEOLUS, CPEX-AW studied the dynamics related to the Saharan Air Layer, African Easterly Waves and Jets, Tropical Easterly Jet, and deep convection in the InterTropical Convergence Zone (ITCZ). CPEX-AW science goals include:• Better understanding interactions of convective cloud systems and tropospheric winds as part of the joint NASA-ESA Aeolus Cal/Val effort over the tropical Atlantic;• Observing the vertical structure and variability of the marine boundary layer in relation to initiation and lifecycle of the convective cloud systems, convective processes (e.g., cold pools), and environmental conditions within and across the ITCZ;• Investigating how the African easterly waves and dry air and dust associated with Sahara Air Layer control the convectively suppressed and active periods of the ITCZ;• Investigating interactions of wind, aerosol, clouds, and precipitation and effects on long range dust transport and air quality over the western Atlantic.In order to successfully achieve the objectives of the campaign, NASA deployed its DC-8 aircraft equipped with an Airborne Third Generation Precipitation Radar (APR-3), Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), and dropsondes. This campaign aims to provide useful material to atmospheric scientists, meteorologists, lidar experts, air quality experts, professors, and students. The Atmospheric Science Data Center (ASDC) archives the dropsonde, HALO, and DAWN data products for CPEX-AW. For additional datasets please visit the Global Hydrometeorology Resource Center (GHRC).
DC-8 Meteorological and Navigation Data CPEX-AW
공공데이터포털
The DC-8 Meteorological and Navigation Data CPEX-AW dataset is a subset of airborne measurements that include GPS positioning and trajectory data, aircraft orientation, and atmospheric state measurements of temperature, pressure, water vapor, and horizontal winds. These measurements were taken from the NASA DC-8 aircraft during the Convective Processes Experiment – Aerosols & Winds (CPEX-AW) field campaign. CPEX-AW was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix, U.S. Virgin Islands. Data are available from August 17, 2021 through September 4, 2021 in ASCII format.
CPEX-CV Dropsonde Data
공공데이터포털
CPEXCV-Dropsondes_1 is the dropsonde data files collected during the Convective Processes Experiment - Cabo Verde (CPEX-CV). Data collection for this product is complete.Seeking to better understand atmospheric processes in regions with little data, the Convective Processes Experiment – Cabo Verde (CPEX-CV) campaign conducted by NASA is a continuation of the CPEX – Aerosols & Winds (CPEX-AW) campaign that took place between August to September 2021. The campaign will take place between 1-30 September 2022 and will operate out of Sal Island, Cabo Verde with the primary goal of investigating atmospheric dynamics, marine boundary layer properties, convection, the dust-laden Saharan Air Layer, and their interactions across various spatial scales to improve understanding and predictability of process-level lifecycles in the data-sparse tropical East Atlantic region.CPEX-CV will work towards its goal by addressing four main science objectives. The first goal is to improve understanding of the interaction between large-scale environmental forcings such as the Intertropical Convergence Zone (ITCZ), Saharan Air Layer, African easterly waves, and mid-level African easterly jet, and the lifecycle and properties of convective cloud systems, including tropical cyclone precursors, in the tropical East Atlantic region. Next, observations will be made about how local kinematic and thermodynamic conditions, including the vertical structure and variability of the marine boundary layer, relate to the initiation and lifecycle of convective cloud systems and their processes. Third, CPEX-CV will investigate how dynamical and convective processes affect size dependent Saharan dust vertical structure, long-range Saharan dust transport, and boundary layer exchange pathways. The last objective will be to assess the impact of CPEX-CV observations of atmospheric winds, thermodynamics, clouds, and aerosols on the prediction of tropical Atlantic weather systems and validate and interpret spaceborne remote sensors that provide similar measurements.To achieve these objectives, the NASA DC-8 aircraft will be deployed with remote sensing instruments and dropsondes that will allow for the measurement of tropospheric aerosols, winds, temperature, water vapor, and precipitation. Instruments onboard the aircraft include the Airborne Third Generation Precipitation Radar (APR-3), lidars such as the Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), Advanced Vertical Atmospheric Profiling System (AVAPS) dropsonde system, Cloud Aerosol and Precipitation Spectrometer (CAPS), and the Airborne In-situ and Radio Occultation (AIRO) instrument. Measurements taken by CPEX-CV will assist in moving science forward from previous CPEX and CPEX-AW missions, the calibration and validation of satellite measurements, and the development of airborne sensors, especially those with potential for satellite deployment.