GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1
공공데이터포털
The GRIP DC-8 Navigation and Housekeeping Data contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The major goal was to better understand how tropical storms form and develop into major hurricanes. The NASA DC-8 is outfitted with a navigational recording system which in combination with the Research Environment for Vehicle-Embedded Analysis on Linux (REVEAL) provides detailed flight parameters such as airspeed, altitude, roll/pitch/yaw angles, ground speed, flight level wind speed, temperature and many others. The REVEAL system is a configurable embedded system for facilitating integration of instrument payloads with vehicle systems and communication links. REVEAL systems currently serve as onboard data acquisition, processing, and recording systems.
CAMEX-3 DC-8 NAVIGATION (DADS) DATA
공공데이터포털
The CAMEX-3 DC-8 Navigation Data Acquisition and Distribution System (DADS) data files contain information recorded by navigation and data collection systems onboard the NASA DC-8 aircraft. These data files contain typical navigation data (e.g. date, time, lat/lon, altitude), and meteorological parameters (e.g. wind speed and direction, temperature, saturation vapor pressure) collected in support of the third field campaign in the Convection And Moisture EXperiment (CAMEX) series, CAMEX-3. This field campaign took place from August to September 1998 based out of Patrick Air Force Base in Florida, with the purpose of studying various aspects of tropical cyclones in the region. These data are available in ASCII file format with browse imagery available in GIF file format. Each file contains data recorded at one second intervals for each flight.
DC-8 Meteorological and Navigation Data CPEX-AW
공공데이터포털
The DC-8 Meteorological and Navigation Data CPEX-AW dataset is a subset of airborne measurements that include GPS positioning and trajectory data, aircraft orientation, and atmospheric state measurements of temperature, pressure, water vapor, and horizontal winds. These measurements were taken from the NASA DC-8 aircraft during the Convective Processes Experiment – Aerosols & Winds (CPEX-AW) field campaign. CPEX-AW was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix, U.S. Virgin Islands. Data are available from August 17, 2021 through September 4, 2021 in ASCII format.
NAAMES C-130 Navigational and Meteorological Data, Version 1
공공데이터포털
NAAMES_MetNav_AircraftInSitu_Data are in situ meteorological and navigational measurements collected onboard the C-130 aircraft during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). These measurements were collected from November 4, 2015 – November 29, 2015, May 11, 2016 – June 5, 2016 and August 30, 2017-September 22, 2017 over the North Atlantic Ocean. The primary objective of NAAMES was to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. The airborne products link local-scale processes and properties to the larger scale continuous satellite record. Data collection for this product is complete.The NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) project was the first NASA Earth Venture – Suborbital mission focused on studying the coupled ocean ecosystem and atmosphere. NAAMES utilizes a combination of ship-based, airborne, autonomous sensor, and remote sensing measurements that directly link ocean ecosystem processes, emissions of ocean-generated aerosols and precursor gases, and subsequent atmospheric evolution and processing. Four deployments coincide with the seasonal cycle of phytoplankton in the North Atlantic Ocean: the Winter Transition (November 5 – December 2, 2015), the Bloom Climax (May 11 – June 5, 2016), the Deceleration Phase (August 30 – September 24, 2017), and the Acceleration Phase (March 20 – April 13, 2018). Ship-based measurements were conducted from the Woods Hole Oceanographic Institution Research Vessel Atlantis in the middle of the North Atlantic Ocean, while airborne measurements were conducted on a NASA Wallops Flight Facility C-130 Hercules that was based at St. John's International Airport, Newfoundland, Canada. Data products in the ASDC archive focus on the NAAMES atmospheric aerosol, cloud, and trace gas data from the ship and aircraft, as well as related satellite and model data subsets. While a few ocean-remote sensing data products (e.g., from the high-spectral resolution lidar) are also included in the ASDC archive, most ocean data products reside in a companion archive at SeaBass.
ASIA-AQ DC-8 In-Situ Meteorology and Navigation Data
공공데이터포털
ASIA-AQ_MetNav_AircraftInSitu_DC8_Data is the in-situ meteorology and navigation data collected onboard the DC-8 aircraft during the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) campaign. Data from the Diode Laser Hygrometer (DLH) and the Meteorological Measurement System (MMS) are featured in this collection. Data collection for this product is complete.The ASIA-AQ campaign was an international cooperative field study designed to address local air quality challenges. Conducted from January-March 2024, ASIA-AQ deployed multiple aircraft to collect in situ and remote sensing measurements, along with numerous ground-based observations and modeling assessments. Data was collected over four countries including, the Philippines, Taiwan, South Korea and Thailand and flights were conducted in full partnership with local scientists and environmental agencies responsible for air quality monitoring and assessment. One of the primary goals of ASIA-AQ was to contribute improving integration of satellite observations with existing air quality ground monitoring and modeling efforts across Asia. Air quality observations from satellites are evolving with new capabilities from South Korea’s Geostationary Environment Monitoring Spectrometer (GEMS), which conducts hourly measurements to provide a new view of air quality conditions from space that complements and depends upon ground-based monitoring efforts of countries in its field of view. ASIA-AQ science goals focused on satellite validation and interpretation, emissions quantification and verification, model evaluation, aerosol chemistry, and ozone chemistry.
DC3 In-Situ NSF/NCAR GV-HIAPER Meteorological and Navigational Data
공공데이터포털
DC3_MetNav_AircraftInSitu_NSF-GV-HIAPER_Data are in-situ meteorological and navigational data collected onboard the NSF/NCAR GV-HIAPER aircraft during the Deep Convective Clouds and Chemistry (DC3) field campaign. Data collection for this product is complete.The Deep Convective Clouds and Chemistry (DC3) field campaign sought to understand the dynamical, physical, and lightning processes of deep, mid-latitude continental convective clouds and to define the impact of these clouds on upper tropospheric composition and chemistry. DC3 was conducted from May to June 2012 with a base location of Salina, Kansas. Observations were conducted in northeastern Colorado, west Texas to central Oklahoma, and northern Alabama in order to provide a wide geographic sample of storm types and boundary layer compositions, as well as to sample convection.DC3 had two primary science objectives. The first was to investigate storm dynamics and physics, lightning and its production of nitrogen oxides, cloud hydrometeor effects on wet deposition of species, surface emission variability, and chemistry in anvil clouds. Observations related to this objective focused on the early stages of active convection. The second objective was to investigate changes in upper tropospheric chemistry and composition after active convection. Observations related to this objective focused on the 12-48 hours following convection. This objective also served to explore seasonal change of upper tropospheric chemistry.In addition to using the NSF/NCAR Gulfstream-V (GV) aircraft, the NASA DC-8 was used during DC3 to provide in-situ measurements of the convective storm inflow and remotely-sensed measurements used for flight planning and column characterization. DC3 utilized ground-based radar networks spread across its observation area to measure the physical and kinematic characteristics of storms. Additional sampling strategies relied on lightning mapping arrays, radiosondes, and precipitation collection. Lastly, DC3 used data collected from various satellite instruments to achieve its goals, focusing on measurements from CALIOP onboard CALIPSO and CPL onboard CloudSat. In addition to providing an extensive set of data related to deep, mid-latitude continental convective clouds and analyzing their impacts on upper tropospheric composition and chemistry, DC3 improved models used to predict convective transport. DC3 improved knowledge of convection and chemistry, and provided information necessary to understanding the processes relating to ozone in the upper troposphere.
NAAMES R/V Atlantis Navigational and Meteorological In Situ Data, Version 1
공공데이터포털
NAAMES_MetNav_ShipInSitu_Data are in situ meteorological and navigational measurements collected onboard the R/V Atlantis vessel during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). These measurements were collected from November 4, 2015 – November 29, 2015, May 11, 2016 – June 5, 2016, August 30, 2017-September 22, 2017 and March 18, 2018 – April 13, 2018 over the North Atlantic Ocean. The primary objective of NAAMES was to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. The ship-based measurements provide detailed characterization of plankton stocks, rate processes, and community composition. Ship measurements collected during NAAMES also characterize sea water volatile organic compounds, their processing by ocean ecosystems, and the concentrations and properties of gases and particles in the overlying atmosphere. Data collection for this product is complete.The NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) project was the first NASA Earth Venture – Suborbital mission focused on studying the coupled ocean ecosystem and atmosphere. NAAMES utilizes a combination of ship-based, airborne, autonomous sensor, and remote sensing measurements that directly link ocean ecosystem processes, emissions of ocean-generated aerosols and precursor gases, and subsequent atmospheric evolution and processing. Four deployments coincide with the seasonal cycle of phytoplankton in the North Atlantic Ocean: the Winter Transition (November 5 – December 2, 2015), the Bloom Climax (May 11 – June 5, 2016), the Deceleration Phase (August 30 – September 24, 2017), and the Acceleration Phase (March 20 – April 13, 2018). Ship-based measurements were conducted from the Woods Hole Oceanographic Institution Research Vessel Atlantis in the middle of the North Atlantic Ocean, while airborne measurements were conducted on a NASA Wallops Flight Facility C-130 Hercules that was based at St. John's International Airport, Newfoundland, Canada. Data products in the ASDC archive focus on the NAAMES atmospheric aerosol, cloud, and trace gas data from the ship and aircraft, as well as related satellite and model data subsets. While a few ocean-remote sensing data products (e.g., from the high-spectral resolution lidar) are also included in the ASDC archive, most ocean data products reside in a companion archive at SeaBass.