데이터셋 상세
미국
SEAC4RS DC-8 Aircraft In-Situ Radiation Data
SEAC4RS_Radiation_AircraftInSitu_DC8_Data are in-situ radiation data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
연관 데이터
SEAC4RS DC-8 Aircraft In-Situ Aerosol Data
공공데이터포털
SEAC4RS_Aerosol_AircraftInSitu_DC8_Data are in-situ aerosol data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
SEAC4RS DC-8 Aircraft In-Situ Meteorological and Navigational Data
공공데이터포털
SEAC4RS_MetNav_AircraftInSitu_DC8_Data are in-situ meteorological and navigation data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
SEAC4RS DC-8 Aircraft Miscellaneous Data
공공데이터포털
SEAC4RS_Miscellaneous_AircraftInSitu_DC8_Data are miscellaneous ancillary data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data from the Goddard Earth Observing System Model (GEOS-5) are featured in this product. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
SEAC4RS DC-8 Aircraft In-Situ Cloud Data
공공데이터포털
SEAC4RS_Cloud_AircraftInSitu_DC8_Data are in-situ cloud data collected onboard the DC8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for UT/LS chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of the trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 was operating in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.
DC3 In-Situ DC-8 Aircraft Radiation Data
공공데이터포털
DC3_Radiation_AircraftInSitu_DC8_Data are in-situ radiation data collected onboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry (DC3) field campaign. Data collection for this product is complete.The Deep Convective Clouds and Chemistry (DC3) field campaign sought to understand the dynamical, physical, and lightning processes of deep, mid-latitude continental convective clouds and to define the impact of these clouds on upper tropospheric composition and chemistry. DC3 was conducted from May to June 2012 with a base location of Salina, Kansas. Observations were conducted in northeastern Colorado, west Texas to central Oklahoma, and northern Alabama in order to provide a wide geographic sample of storm types and boundary layer compositions, as well as to sample convection.DC3 had two primary science objectives. The first was to investigate storm dynamics and physics, lightning and its production of nitrogen oxides, cloud hydrometeor effects on wet deposition of species, surface emission variability, and chemistry in anvil clouds. Observations related to this objective focused on the early stages of active convection. The second objective was to investigate changes in upper tropospheric chemistry and composition after active convection. Observations related to this objective focused on the 12-48 hours following convection. This objective also served to explore seasonal change of upper tropospheric chemistry.In addition to using the NSF/NCAR Gulfstream-V (GV) aircraft, the NASA DC-8 was used during DC3 to provide in-situ measurements of the convective storm inflow and remotely-sensed measurements used for flight planning and column characterization. DC3 utilized ground-based radar networks spread across its observation area to measure the physical and kinematic characteristics of storms. Additional sampling strategies relied on lightning mapping arrays, radiosondes, and precipitation collection. Lastly, DC3 used data collected from various satellite instruments to achieve its goals, focusing on measurements from CALIOP onboard CALIPSO and CPL onboard CloudSat. In addition to providing an extensive set of data related to deep, mid-latitude continental convective clouds and analyzing their impacts on upper tropospheric composition and chemistry, DC3 improved models used to predict convective transport. DC3 improved knowledge of convection and chemistry, and provided information necessary to understanding the processes relating to ozone in the upper troposphere.
SEAC4RS ER-2 Aircraft In-Situ Radiation Data
공공데이터포털
SEAC4RS_Radiation_AircraftInSitu_ER2_Data are in-situ radiation data collected onboard the ER-2 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEA4CRS) airborne field study. Data collection for this product is complete.The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field study was conducted in August and September of 2013. The field operation was based in Houston, Texas. The primary SEAC4RS science objectives are: to determine how pollutant emissions are redistributed via deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications for upper troposphere and lower stratosphere (UT/LS) chemistry; to identify the influences and feedbacks of aerosol particles from anthropogenic pollution and biomass burning on meteorology and climate through changes in the atmospheric heat budget (i.e., semi-direct effect) or through microphysical changes in clouds (i.e., indirect effects); and lastly, to serve as a calibration and validation test bed for future satellite instruments and missions.The airborne observational data were collected from three aircraft platforms: the NASA DC-8, ER-2, and SPEC LearJet. Both the NASA DC-8 and ER-2 aircraft were instrumented for comprehensive in-situ and remote sensing measurements of trace gas, aerosol properties, and cloud properties. In addition, radiative fluxes and meteorological parameters were also recorded. The NASA DC-8 was mostly responsible for tropospheric sampling, while the NASA ER-2 operated in the lower stratospheric regime. The SPEC LearJet was dedicated to in-situ cloud characterizations. To accomplish the science objectives, the flight plans were designed to investigate the influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in turn, feedback on regional air quality. With respect to meteorological feedbacks, the opportunity to examine the impact of polluting aerosols on cloud properties and dynamics was of particular interest.