데이터셋 상세
미국
STRAT Model Data
STRAT_Model_Data is the model data collected during the Stratospheric Tracers of Atmospheric Transport (STRAT) campaign. Data collection for this product is complete.The STRAT campaign was a field campaign conducted by NASA from May 1995 to February 1996. The primary goal of STRAT was to collect measurements of the change of long-lived tracers and functions of altitude, latitude, and season. These measurements were taken to aid with determining rates for global-scale transport and future distributions of high-speed civil transport (HSCT) exhaust that was emitted into the lower atmosphere. STRAT had four main objectives: defining the rate of transport of trace gases from the stratosphere and troposphere (i.e., HSCT exhaust emissions), improving the understanding of dynamical coupling rates for transport of trace gases between tropical regions and higher latitudes and lower altitudes (between tropical regions, higher latitudes, and lower altitudes are where most ozone resides), improving understanding of chemistry in the upper troposphere and lower stratosphere, and finally, providing data sets for testing two-dimensional and three-dimensional models used in assessments of impacts from stratospheric aviation. To accomplish these objectives, the STRAT Science Team conducted various surface-based remote sensing and in-situ measurements. NASA flew the ER-2 aircraft along with balloons such as ozonesondes and radiosondes just below the tropopause in the Northern Hemisphere to collect data. Along with the ER-2 and balloons, NASA also utilized satellite imagery, theoretical models, and ground sites. The ER-2 collected data on HOx, NOy, CO2, ozone, water vapor, and temperature. The ER-2 also collected in-situ stratospheric measurements of N2O, CH4, CO, HCL, and NO using the Aircraft Laser Infrared Absorption Spectrometer (ALIAS). Ozonesondes and radiosondes were also deployed to collect data on CO2, NO/NOy, air temperature, pressure, and 3D wind. These balloons also took in-situ measurements of N2O, CFC-11, CH4, CO, HCL, and NO2 using the ALIAS. Ground stations were responsible for taking measurements of O3, ozone mixing ratio, pressure, and temperature. Satellites took infrared images of the atmosphere with the goal of aiding in completing STRAT objectives. Pressure and temperature models were created to help plan the mission.
연관 데이터
STRAT Analysis Model Data
공공데이터포털
STRAT_Analysis_ER2_Data is the modeled trajectories and meteorological data along the flight path for the ER-2 aircraft collected during the Stratospheric Tracers of Atmospheric Transport (STRAT) campaign. Data collection for this product is complete.The STRAT campaign was a field campaign conducted by NASA from May 1995 to February 1996. The primary goal of STRAT was to collect measurements of the change of long-lived tracers and functions of altitude, latitude, and season. These measurements were taken to aid with determining rates for global-scale transport and future distributions of high-speed civil transport (HSCT) exhaust that was emitted into the lower atmosphere. STRAT had four main objectives: defining the rate of transport of trace gases from the stratosphere and troposphere (i.e., HSCT exhaust emissions), improving the understanding of dynamical coupling rates for transport of trace gases between tropical regions and higher latitudes and lower altitudes (between tropical regions, higher latitudes, and lower altitudes are where most ozone resides), improving understanding of chemistry in the upper troposphere and lower stratosphere, and finally, providing data sets for testing two-dimensional and three-dimensional models used in assessments of impacts from stratospheric aviation. To accomplish these objectives, the STRAT Science Team conducted various surface-based remote sensing and in-situ measurements. NASA flew the ER-2 aircraft along with balloons such as ozonesondes and radiosondes just below the tropopause in the Northern Hemisphere to collect data. Along with the ER-2 and balloons, NASA also utilized satellite imagery, theoretical models, and ground sites. The ER-2 collected data on HOx, NOy, CO2, ozone, water vapor, and temperature. The ER-2 also collected in-situ stratospheric measurements of N2O, CH4, CO, HCL, and NO using the Aircraft Laser Infrared Absorption Spectrometer (ALIAS). Ozonesondes and radiosondes were also deployed to collect data on CO2, NO/NOy, air temperature, pressure, and 3D wind. These balloons also took in-situ measurements of N2O, CFC-11, CH4, CO, HCL, and NO2 using the ALIAS. Ground stations were responsible for taking measurements of O3, ozone mixing ratio, pressure, and temperature. Satellites took infrared images of the atmosphere with the goal of aiding in completing STRAT objectives. Pressure and temperature models were created to help plan the mission.
PEM West B Model Data
공공데이터포털
PEM-West-B_Model_Data is the model data collected during the Pacific Exploratory Mission (PEM) West B suborbital campaign. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
SOLVE II DC-8 Analysis Model Data
공공데이터포털
SOLVE2_Analysis_DC8_Data contains modeled trajectories and meteorological data along the flight path for the DC-8 aircraft collected during the SAGE III Ozone Loss and Validation Experiment II (SOLVE II). Data collection for this product is complete.The SOLVE campaign was a NASA multi-program effort of the Upper Atmosphere Research Program (UARP), Atmospheric Effects of Aviation Project (AEAP), Atmospheric Chemistry Modeling and Analysis Program (ACMAP) and Earth Observing System (EOS) of NASA’s Earth Science Enterprise (ESE). SOLVE’s primary objective was for calibrating and validating the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements, while examining the processes that controlled ozone levels at a mid- to high-latitude range. The major goal of SAGE III was to quantitatively assess ozone loss at high latitudes. SOLVE was a two-phase experiment, the first phase, SOLVE, occurred during the fall of 1999 through the spring of 2000. The second phase, SOLVE II, occurred during the winter of 2003.SOLVE took place in the Arctic high-latitude region during the winter. The polar ozone depletion processes cause by human-produced chlorine and bromine are most active in mid-to-late winter and early spring in the high Arctic. In order to conduct this validation experiment, NASA deployed the NASA ER-2 aircraft and NASA DC-8 aircraft. The ER-2 measured a variety of atmospheric data, including ozone (O3), H2O, CO2, ClONO2, HCl, ClO/BrO, and Cl2O2. The DC-8 aircraft measured ozone, ClO/BrO, and aerosol, among other atmospheric data. SOLVE also utilized balloon platforms, ground-based instruments, and collaborations with the German Aerospace Center’s (DLR) FALCON aircraft equipped with the OLEX Lidar to achieve the mission objectives. Overall, the campaign had 28 flights, with SOLVE featuring 17 total flights among the different aircrafts and SOLVE II featuring 11 flights.
PEM West A Model Data
공공데이터포털
PEM-West-A_Model_Data is the model data collected during the Pacific Exploratory Mission (PEM) West A suborbital campaign. Data collection for this product is complete.During 1983-2001, NASA conducted a collection of field campaigns as a part of the Global Tropospheric Experiment (GTE) for developing advanced instrumentation to quantify atmospheric trace gases’ sources, sinks, and distribution. Among those was PEM, which intended to improve the scientific understanding of human influence on tropospheric chemistry. Part of the PEM field campaigns (PEM-West) were conducted over the northwestern Pacific region, considered the only major region in the northern hemisphere that is “relatively” free from direct anthropogenic influences. PEM-West was a part of the East Asian/North Pacific Regional Study (APARE). The overarching objectives of PEM-West were 1) to investigate the atmospheric chemistry of ozone (O3) and its precursors over the northwestern Pacific, including the examination of their natural budgets as well as the impact of anthropogenic sources; and 2) to investigate the atmospheric sulfur cycle over the region with emphasis on the relative importance and influence of continental vs marine sulfur sources. The two phases of PEM-West were conducted during differing seasons due to contrasting tropospheric outflow from Asia. The first phase, PEM-West A, was conducted over the western Pacific region off the eastern coast of Asia from September-October 1991, a season characterized by the predominance of flow from mid-Pacific regions. The second phase, PEM-West B, was conducted from February-March 1994, a period characterized by maximum air mass outflow. To accomplish its objectives, the PEM-West campaign deployed the NASA DC-8 aircraft across the northwestern Pacific to gather latitudinal, longitudinal, and vertical profile sampling, as well as extensive sampling in both the marine boundary layer and free troposphere. The aircraft was equipped with a comprehensive suite of in-situ instrument packages for characterization of photochemical precursors, intermediate products, and airmass tracers, including O3, nitric oxide (NO), peroxyacetyl nitrate (PAN), nitrogen oxides (NOy), nonmethane hydrocarbons (NMHCs), hydrogen peroxide (H2O2), acetic acid (CH3OOH), carbon monoxide (CO), and formaldehyde (CH2O). Collectively, these measurements enabled the analyses of the photochemical production/destruction of O3 and the distribution of precursor species. In addition, the DC-8 was equipped with instruments for collecting sulfur measurements, including dimethyl sulfide (DMS), carbonyl sulfide (COS), sulfur dioxide (SO2), and carbon disulfide (CS2). Instruments that collected aerosol composition and microphysical properties were also aboard the DC-8. Both missions deployed a Differential Absorption Lidar (DIAL) system for measurements of O3 vertical profiles above and below the aircraft. One highlight of the project was that flight nine of PEM-West A flew over Typhoon Mireille while it made landfall on the coast of Japan. This allowed for a flight by the DC-8 to study the role of typhoons in the transport of trace gases. Detailed descriptions related to the motivation, implementation, and instrument payloads are available in the PEM-West A overview paper and the PEM-West B overview paper. A collection of the publications based on PEM-West A and B observation are available in the Journal of Geophysical Research special issues: Pacific Exploratory Mission-West Phase A and Pacific Exploratory Mission-West, Phase B (PEM-West B).
STRAT ER-2 Meteorological and Navigational Data
공공데이터포털
STRAT_MetNav_AircraftInSitu_ER2_Data is the in-situ meteorological and navigational data collected during the Stratospheric Tracers of Atmospheric Transport (STRAT) campaign. Data from the Meteorological Measurement System (MMS), ER-2 Nav Recorder (NavRec), Microwave Temperature Profiler (MTP), and the Composition and Photo-Dissociative Flux Measurement (CPFM) are featured in this collection. Data collection for this product is complete.The STRAT campaign was a field campaign conducted by NASA from May 1995 to February 1996. The primary goal of STRAT was to collect measurements of the change of long-lived tracers and functions of altitude, latitude, and season. These measurements were taken to aid with determining rates for global-scale transport and future distributions of high-speed civil transport (HSCT) exhaust that was emitted into the lower atmosphere. STRAT had four main objectives: defining the rate of transport of trace gases from the stratosphere and troposphere (i.e., HSCT exhaust emissions), improving the understanding of dynamical coupling rates for transport of trace gases between tropical regions and higher latitudes and lower altitudes (between tropical regions, higher latitudes, and lower altitudes are where most ozone resides), improving understanding of chemistry in the upper troposphere and lower stratosphere, and finally, providing data sets for testing two-dimensional and three-dimensional models used in assessments of impacts from stratospheric aviation. To accomplish these objectives, the STRAT Science Team conducted various surface-based remote sensing and in-situ measurements. NASA flew the ER-2 aircraft along with balloons such as ozonesondes and radiosondes just below the tropopause in the Northern Hemisphere to collect data. Along with the ER-2 and balloons, NASA also utilized satellite imagery, theoretical models, and ground sites. The ER-2 collected data on HOx, NOy, CO2, ozone, water vapor, and temperature. The ER-2 also collected in-situ stratospheric measurements of N2O, CH4, CO, HCL, and NO using the Aircraft Laser Infrared Absorption Spectrometer (ALIAS). Ozonesondes and radiosondes were also deployed to collect data on CO2, NO/NOy, air temperature, pressure, and 3D wind. These balloons also took in-situ measurements of N2O, CFC-11, CH4, CO, HCL, and NO2 using the ALIAS. Ground stations were responsible for taking measurements of O3, ozone mixing ratio, pressure, and temperature. Satellites took infrared images of the atmosphere with the goal of aiding in completing STRAT objectives. Pressure and temperature models were created to help plan the mission.
Atmos. Profile: Std. Press. Level (FIFE)
공공데이터포털
The FIFE Standard Pressure Level Radiosonde Data Set provides a set of standard level profiles (i.e., 5 mb pressure intervals) from over 450 radiosonde balloon flights, which occurred every one to three hours (daylight hours) during the FIFE IFCs. This derived profile data were computed to 5 mb pressure intervals through simple linear interpolation means. An assumption exists that a linear interpolation scheme may be used with sufficient accuracy to assign meteorological values at 5 mb pressure levels. Some errors are introduced using this method. Several new variables were computed from the original FIFE Radiosonde Data and are included in this derived data set. U (east-west) and V (north-south) winds have been computed from wind speed and direction, and potential temperature has been computed from pressure and temperature. These new parameters are desirable for initial conditions in numerical models as well as forcing functions in models, or as verification and comparison of numerical model's results.
CLPX-Model: Land Data Assimilation System (LDAS) Data, Version 1
공공데이터포털
The LDAS data set contains 43 model and observation-based fields produced by the LDAS uncoupled modeling system at the NASA Goddard Space Flight Center using the Mosaic Land Surface Model (LSM).