Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma
공공데이터포털
This data set consists of digitized polygons of constant hydraulic conductivity values for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock animals account for most of the remaining water withdrawn. The Vamoosa-Ada aquifer is defined in a ground-water report as consisting principally of the rocks of the Late Pennsylvanian-age Vamoosa Formation and overlying Ada Group. The Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. The Vamoosa-Ada aquifer is unconfined where it outcrops in about an 1,700-square-mile area. The hydraulic conductivity of the Vamoosa-Ada aquifer was computed as 3 feet per day in a ground-water report. Most of the hydraulic conductivity polygons were extracted from published digital geology data sets. The lines in the digital geology data sets were scanned or digitized from maps published at a scale of 1:250,000 and represent geologic contacts. Some of the lines in the data set were interpolated in areas where the Vamoosa-Ada aquifer is overlain by alluvial and terrace deposits near streams and rivers.
Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma
공공데이터포털
This data set consists of digitized polygons of constant hydraulic conductivity values for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock animals account for most of the remaining water withdrawn. The Vamoosa-Ada aquifer is defined in a ground-water report as consisting principally of the rocks of the Late Pennsylvanian-age Vamoosa Formation and overlying Ada Group. The Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. The Vamoosa-Ada aquifer is unconfined where it outcrops in about an 1,700-square-mile area. The hydraulic conductivity of the Vamoosa-Ada aquifer was computed as 3 feet per day in a ground-water report. Most of the hydraulic conductivity polygons were extracted from published digital geology data sets. The lines in the digital geology data sets were scanned or digitized from maps published at a scale of 1:250,000 and represent geologic contacts. Some of the lines in the data set were interpolated in areas where the Vamoosa-Ada aquifer is overlain by alluvial and terrace deposits near streams and rivers.
Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma
공공데이터포털
This data set consists of digitized water-level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock animals account for most of the remaining water withdrawn. The Vamoosa-Ada aquifer is defined in a ground-water report as consisting principally of the rocks of the Late Pennsylvanian-age Vamoosa Formation and overlying Ada Group. The Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. The Vamoosa-Ada aquifer is unconfined where it outcrops in about an 1,700-square-mile area. The water-level elevation contours were digitized from a mylar map, at a scale of 1:250,000, used to publish a plate in a ground-water report about the Vamoosa-Ada aquifer. The water-level elevation contours in this data set extend west of the aquifer outcrop to areas where Vanoss Group rocks overlie the Ada Group. The data set also includes a water-level elevation contour for a terrace deposit east of the aquifer outcrop near the North Canadian River. Water-level elevations range from 800 to 1,000 feet above sea level for the Vamoosa-Ada aquifer.
Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma
공공데이터포털
This data set consists of digital aquifer boundaries for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of Cimarron, Texas, and Beaver, and the western counties of Harper, Ellis, Woodward, Dewey, and Roger Mills. The High Plains aquifer underlies approximately 7,000 square miles of Oklahoma and is used extensively for irrigation. The High Plains aquifer is a water-table aquifer and consists predominately of the Tertiary-age Ogallala Formation and overlying Quaternary-age alluvial and terrace deposits. In some areas the aquifer is absent and the underlying Triassic, Jurassic, or Cretaceous-age rocks are exposed at the surface. These rocks are hydraulically connected with the aquifer in some areas. The High Plains aquifer is composed of interbedded sand, siltstone, clay, gravel, thin limestones, and caliche. The proportion of various lithological materials changes rapidly from place to place, but poorly sorted sand and gravel predominate. The rocks are poorly to moderately well cemented by calcium carbonate. The aquifer boundaries were constructed by extracting lines from digital surficial geology data sets based on a scale of 1:125,000 for the panhandle counties and 1:250,000 for the western counties. Some of the lines were digitized from maps in a published water-level elevation map for 1980.
Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma
공공데이터포털
This data set consists of digitized water-level elevation contours for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of Cimarron, Texas, and Beaver, and the western counties of Harper, Ellis, Woodward, Dewey, and Roger Mills. The High Plains aquifer underlies approximately 7,000 square miles of Oklahoma and is used extensively for irrigation. The High Plains aquifer is a water-table aquifer and consists predominately of the Tertiary-age Ogallala Formation and overlying Quaternary-age alluvial and terrace deposits. In some areas the aquifer is absent and the underlying Triassic, Jurassic, or Cretaceous-age rocks are exposed at the surface. These rocks are hydraulically connected with the aquifer in some areas. The High Plains aquifer is composed of interbedded sand, siltstone, clay, gravel, thin limestones, and caliche. The proportion of various lithological materials changes rapidly from place to place, but poorly sorted sand and gravel predominate. The rocks are poorly to moderately well cemented by calcium carbonate. The water-level elevations were measured in January, February, and March 1980 and ranged from about 4,650 feet above sea level in Cimarron County to about 2,000 feet above sea level in Woodward County. The water-level elevation contours were digitized from folded paper maps in a published report. The source maps were published at a scale of 1:250,000.