데이터셋 상세
미국
ACTIVATE Falcon In Situ Aerosol Data
ACTIVATE_Aerosol_AircraftInSitu_Falcon_Data is the aerosol data collected onboard the HU-25 Falcon aircraft via in-situ instrumentation during the ACTIVATE project. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.
연관 데이터
ACTIVATE Falcon In-Situ Meteorological and Navigational Data
공공데이터포털
ACTIVATE_MetNav_AircraftInSitu_Falcon_Data is the meteorological and navigational data collected onboard the HU-25 Falcon aircraft via in-situ instrumentation during the ACTIVATE project. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.
ACTIVATE Falcon In Situ Cloud Data
공공데이터포털
ACTIVATE_Cloud_AircraftInSitu_Falcon_Data is the cloud data collected onboard the HU-25 Falcon aircraft via in-situ instrumentation during the ACTIVATE project. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.
ACTIVATE Falcon In Situ Trace Gas Data
공공데이터포털
ACTIVATE_TraceGas_AircraftInSitu_Falcon_Data is the trace gas data collected onboard the HU-25 Falcon aircraft via in-situ instrumentation during the ACTIVATE project. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.
ACTIVATE King Air Aerosol and Cloud Remotely Sensed Data
공공데이터포털
ACTIVATE_AerosolCloud_AircraftRemoteSensing_KingAir_Data is the aerosol and cloud data collected onboard the B-200 King Air aircraft via remote sensing instrumentation during the ACTIVATE project. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project is a five-year project (January 2019-December 2023) that will provide important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studies the atmosphere over the western North Atlantic and samples its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air will primarily be used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements will also be onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic are planned through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy is implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study
ACCLIP WB-57 Aircraft In-Situ Aerosol Data
공공데이터포털
ACCLIP_Aerosol_AircraftInSitu_WB57_Data is the in-situ aerosol data collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Particle Analysis by Laser Mass Spectrometry - Next Generation (PALMS-NG), Single Particle Soot Photometer (SP2), Nucleation-Mode Aerosol Size Spectrometer (N-MASS), Printed Optical Particle Spectrometer (POPS), and the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) is featured in this collection. Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate.The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.
ACCLIP WB-57 Aerosol and Cloud Remotely Sensed Data
공공데이터포털
ACCLIP_AerosolCloud_AircraftRemoteSensing_WB57_Data is the cloud and aerosol remote sensing data from the Roscoe lidar collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data collection for this product is complete.ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.