ISLSCP II ECMWF Near-Surface Meteorology Parameters
공공데이터포털
This data set for the ISLSCP Initiative II data collection provides meteorology data with fixed, monthly, monthly-6-hourly, 6-hourly, and 3-hourly temporal resolutions. The data were derived from the European Centre for Medium-range Weather Forecasts (ECMWF) near-surface meteorology data set, 40-year re-analysis, or ERA-40 (Simmons and Gibson, 2000), which covers the years 1957 to 2001. The data were processed onto the ISLSCP II Earth grid with a spatial resolution of 1-degree in both latitude and longitude, and span the common ISLSCP II period from 1986 to 1995.The ECMWF forecast system is called the Integrated Forecasting System (IFS) and was developed in co-operation with Meteo-France. For ERA40 it is used with 60 levels from the top of the model at 10 Pa to the lowest level at about 10 m above the surface. There are 46 compressed (.tar.gz) data files with this data set. Each uncompressed file contains space-delimited text (.asc) data files.
NAMMA PRAIA CAPE VERDE RADIOSONDE V1
공공데이터포털
The NAMMA Praia Cape Verde Radiosonde data used Sippican MarkIIa DGPS (LOS) radiosondes, which were launched in support of NASA African Monsoon Multidisciplinary Analyses (NAMMA) mission. This mission was based in the Cape Verde Islands, 350 miles off the coast of Senegal in west Africa. Commencing in August 2006, NASA scientists employed surface observation networks and aircraft to characterize the evolution and structure of African Easterly Waves (AEWs) and Mesoscale Convective Systems over continental western Africa, and their associated impacts on regional water and energy budgets. The radiosondes released were Sippican MK-IIa units developed by Lockheed Martin. The atmospheric soundings were used to measure pressure, temperature, humidity, wind direction and speed and spatial coordinates. Data is grouped by ascending and descending flights and includes temperature, Skew-T, trajectory, wind and time series plots.
NAMMA DC-8 DROPSONDE V1
공공데이터포털
The NAMMA DC-8 Dropsonde dataset were collected by the DC-8 dropsonde system, which uses an integrated, highly accurate, GPS-located atmospheric profiling dropsonde measuring and recording current atmospheric conditions in a vertical column below the aircraft. hese dropsondes, also known as dropwindsondes or parachute radiosondes, are small, lightweight (less than 1 lb) cylindrical instruments that fall freely through the atmosphere, slowed somewhat by a small inflatable parachute. These data files were generated during support of the NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign, a field research investigation sponsored by the Science Mission Directorate of the National Aeronautics and Space Administration (NASA). This mission was based in the Cape Verde Islands, 350 miles off the coast of Senegal in west Africa. Commencing in August 2006, NASA scientists employed surface observation networks and aircraft to characterize the evolution and structure of African Easterly Waves (AEWs) and Mesoscale Convective Systems over continental western Africa, and their associated impacts on regional water and energy budgets.
CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1
공공데이터포털
The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global Positioning System (GPS) receivers to measure the atmospheric state parameters (temp, humidity, windspeed/direction, pressure) and location in 3 dimensional space during the sonde's descent once each half second. Measurements was transmitted to the aircraft from the time of release until impact with the ocean's surface.
LMOS Surface Mobile EPA-GMAP Ozone Data
공공데이터포털
LMOS_TraceGas_SurfaceMobile_EPA-GMAP_Data_1 is the Lake Michigan Ozone Study (LMOS) trace gas surface mobile data collected via the Environmental Protection Agency (EPA) GMAP mobile platform during the LMOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA, Electric Power Research Institute (EPRI), National Science Foundation (NSF), Lake Michigan Air Directors Consortium (LADCO) and its member states, and several research groups at universities. Data collection is complete.Elevated spring and summertime ozone levels remain a challenge along the coast of Lake Michigan, with a number of monitors recording levels/amounts exceeding the 2015 National Ambient Air Quality Standards (NAAQS) for ozone. The production of ozone over Lake Michigan, combined with onshore daytime “lake breeze” airflow is believed to increase ozone concentrations at locations within a few kilometers off shore. This observed lake-shore gradient motivated the Lake Michigan Ozone Study (LMOS). Conducted from May through June 2017, the goal of LMOS was to better understand ozone formation and transport around Lake Michigan; in particular, why ozone concentrations are generally highest along the lakeshore and drop off sharply inland and why ozone concentrations peak in rural areas far from major emission sources. LMOS was a collaborative, multi-agency field study that provided extensive observational air quality and meteorology datasets through a combination of airborne, ship, mobile laboratories, and fixed ground-based observational platforms. Chemical transport models (CTMs) and meteorological forecast tools assisted in planning for day-to-day measurement strategies. The long term goals of the LMOS field study were to improve modeled ozone forecasts for this region, better understand ozone formation and transport around Lake Michigan, provide a better understanding of the lakeshore gradient in ozone concentrations (which could influence how the Environmental Protection Agency (EPA) addresses future regional ozone issues), and provide improved knowledge of how emissions influence ozone formation in the region.
St. Croix Radiosondes CPEX-AW V1
공공데이터포털
The St. Croix Radiosondes CPEX-AW dataset consists of atmospheric pressure, atmospheric temperature, relative humidity, wind speed, and wind direction measurements. These measurements were taken from the DFM-09 Radiosonde instrument during the Convective Processes Experiment – Aerosols & Winds (CPEX-AW) field campaign. CPEX-AW was a joint effort between the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) with the primary goal of conducting a post-launch calibration and validation activities of the Atmospheric Dynamics Mission-Aeolus (ADM-AEOLUS) Earth observation wind Lidar satellite in St. Croix, U.S. Virgin Islands. Data are available from August 19, 2021 through September 14, 2021 in netCDF and ASCII formats, with associated browse imagery in PNG format.
TES/Aura L2 Water Vapor Lite Nadir V007
공공데이터포털
TL2H2OLN_7 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Water Vapor Lite Nadir Version 7 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality, and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits.A nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consisted of four files, where each file was composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix. A Global Survey consisted of observations along 16 consecutive orbits at the start of a two day cycle, over which 3,200 retrievals were performed. Each observation was the input for retrievals of species volume mixing ratios (VMRs), temperature profiles, surface temperature and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density, and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object was bounded by the number of observations in a global survey and a predefined set of pressure levels representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging is employed. Also, missing or bad retrievals were not reported. The organization of data within the Swath object was based on a superset of the Upper Atmosphere Research Satellite (UARS) pressure levels that was used to report concentrations of trace atmospheric gases. The reporting grid was the same pressure grid used for modeling. There were 67 reporting levels from 1211.53 hPa, which allowed for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the products reported values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files each observation could potentially contain estimates for the concentration of a particular molecule at 67 different pressure levels within the atmosphere. However, for most retrieved profiles, the highest pressure levels were not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or surface, where measurements were not possible, a fill value was applied.To minimize the duplication of information between the individual species standard products, data fields common to each species (such as spacecraft coordinates, emissivity, and other data fields) have been collected into a separate standard product, termed the TES L2 Ancillary Data product (ESDT short name: TL2ANC). Users of this product should also obtain the Ancillary Data product.
NAAMES Sonde Meteorological InSitu Data, Version 1
공공데이터포털
NAAMES_Met_SondeInSitu_Data are meteorological radiosonde measurements collected via radiosonde launches during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). These measurements were collected from November 4, 2015 – November 29, 2015 and May 11, 2016 – June 5 over the North Atlantic Ocean. The primary objective of NAAMES was to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate.The NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) project was the first NASA Earth Venture – Suborbital mission focused on studying the coupled ocean ecosystem and atmosphere. NAAMES utilizes a combination of ship-based, airborne, autonomous sensor, and remote sensing measurements that directly link ocean ecosystem processes, emissions of ocean-generated aerosols and precursor gases, and subsequent atmospheric evolution and processing. Four deployments coincide with the seasonal cycle of phytoplankton in the North Atlantic Ocean: the Winter Transition (November 5 – December 2, 2015), the Bloom Climax (May 11 – June 5, 2016), the Deceleration Phase (August 30 – September 24, 2017), and the Acceleration Phase (March 20 – April 13, 2018). Ship-based measurements were conducted from the Woods Hole Oceanographic Institution Research Vessel Atlantis in the middle of the North Atlantic Ocean, while airborne measurements were conducted on a NASA Wallops Flight Facility C-130 Hercules that was based at St. John's International Airport, Newfoundland, Canada. Data products in the ASDC archive focus on the NAAMES atmospheric aerosol, cloud, and trace gas data from the ship and aircraft, as well as related satellite and model data subsets. While a few ocean-remote sensing data products (e.g., from the high-spectral resolution lidar) are also included in the ASDC archive, most ocean data products reside in a companion archive at SeaBass.