데이터셋 상세
미국
S-MODE Lagrangian Float Observations Version 1
This dataset contains in-situ measurements of temperature, salinity, and velocity from the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) conducted approximately 300 km offshore of San Francisco, during an intensive observation period in the fall of 2022. The data are available in netCDF format with a dimension of time. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. The target in-situ quantities were measured by Lagrangian floats, which were deployed from research vessels and retrieved 3-5 days later. The floats follow the 3D motion of water parcels at depths within or just below the mixed layer and carried a CTD instrument to measure temperature, salinity, and pressure, in addition to an ADCP instrument to measure velocity.
연관 데이터
S-MODE Seaglider Observations Version 1
공공데이터포털
This dataset contains profiles of temperature, dissolved oxygen, salinity, and other observations collected by Seagliders during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) field campaign. The experiment was conducted approximately 300 km offshore of San Francisco, during two intensive operating periods in Fall 2022 and Spring 2023. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. Seagliders are autonomous underwater vehicles (AUVs) designed to glide from the ocean surface to as deep as 1000 m and back whilecollecting profiles of oceanic variables. Data are available in netCDF format.
S-MODE L2 Temperature and Salinity from Saildrones Version 1
공공데이터포털
This dataset contains Saildrone in-situ measurements taken during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) conducted approximately 300 km offshore of San Francisco during a pilot campaign over two weeks in October 2021, and an intensive operating period (IOP) in Fall 2022. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. Saildrones are wind-and-solar-powered unmanned surface vehicles rigged with atmospheric and oceanic sensors that measure upper ocean horizontal velocities, near-surface temperature and salinity, Chlorophyll-a fluorescence, dissolved oxygen concentration, 5-m winds, air temperature, and surface radiation. Acoustic Doppler Current Profiler (ADCP) data samples originally measured at 1 Hz frequency are averaged into 5 minute bins, along with navigation data. Non-ADCP data from IOP1 contain additional bio-optical measurements. All data are available in netCDF format.
S-MODE L2 Shipboard Thermosalinograph, Meteorology, and Bio-optics Measurements Version 1
공공데이터포털
This dataset contains shipboard thermosalinograph (TSG), meteorology, and bio-optics measurements taken during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) field campaign. The experiment was conducted approximately 300 km offshore of San Francisco, during a pilot campaign that spanned two weeks in October 2021, and two intensive operating periods in Fall 2022 and Spring 2023. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. The TSG instrument measures the temperature and conductivity of seawater passing through a port in the hull of the ship. TSG data is calibrated using water samples compared to standard seawater and a laboratory salinometer onboard the ship. This dataset also contains chlorophyll and meteorology measurements including air temperature, barometric pressure, wind speed and direction, relative humidity, and radiative fluxes. Data are available in netCDF format, with separate dimensions for time, time of bio-optics measurements, and time of radiometer measurements.
SCATSAT-1 ESDR Level 2 Ancillary Ocean Surface Fields Version 1.1
공공데이터포털
This dataset contains the first science quality release (post-provisional after v1.0) of the MEaSUREs-funded Earth Science Data Record (ESDR) of ancillary data corresponding to the SCATSAT-1 Level 2 (L2) data products, interpolated in space and time to the scatterometer observations. These auxiliary fields are included to complement those scatterometer observations, specifically for the SCATSAT_ESDR_L2_WIND_STRESS_V1.1 dataset. The fields include: i) ocean surface wind fields from ERA-5 short-term forecast (removed from the analyses times to reduce impacts from assimilated scatterometer retrievals at the beginning of the forecast); ii) collocated in space and time estimations of precipitation from the GPM IMERG product; iii) estimation of the surface currents from the GlobCurrent project. These auxiliary fields are included to complement the scatterometer observation fields and to help in the evaluation process. They are provided on a non-uniform grid within the native L2 SCATSAT-1 sampled locations at a nominal 12.5 km pixel resolution. Each file corresponds to a specific orbital revolution (rev) number, which begins at the southernmost point of the ascending orbit. The thumbnail shows data for two orbits - using all orbits for a single day will provide global coverage. The dataset represents the first science quality release of this product with funding from the MEaSUREs (Making Earth System Data Records for Use in Research Environments) program. Version 1.1 provides a set of updates and improvements from version 1.0, including: 1) improved variable metadata, 2) removed the GlobCurrent stokes drift variables, and 3) provided data source metadata including DOIs for the ERA-5, IMERGE, and GlobCurrent data sources. The primary purpose of this release is for science evaluation by the NASA International Ocean Vector Winds Science Team (IOVWST).
S-MODE Saildrone Level 1 Observations
공공데이터포털
This dataset contains a suite of Saildrone in-situ measurements (including but not limited to temperature, salinity, currents, biochemistry, and meteorology) taken during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) conducted approximately 300 km offshore of San Francisco during a pilot campaign spanning two weeks in October 2021, and two intensive operating periods (IOPs) in Fall 2022 and Spring 2023. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. Saildrones are wind-and-solar-powered unmanned surface vehicles rigged with atmospheric and oceanic sensors that measure upper ocean horizontal velocities, near-surface temperature and salinity, Chlorophyll-a fluorescence, dissolved oxygen concentration, 5-m winds, air temperature, and surface radiation. Acoustic Doppler Current Profiler (ADCP) data samples are available in their raw 1 Hz sampling frequency as well as 5 minute averages, the latter available with navigation data. Other measurements are available as raw files (1Hz or 20 Hz where applicable), as well as 1 minute averages. L1 data are available as a zip file.
S-MODE Temperature and Salinity from Slocum Gliders Version 1
공공데이터포털
This dataset contains Slocum glider in-situ measurements taken during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) field campaign. The experiment was conducted approximately 300 km offshore of San Francisco, during a pilot campaign that spanned two weeks in October 2021, and two intensive operating periods in Fall 2022 and Spring 2023. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. US Naval Oceanographic Office (NAVOCEANO) Slocum gliders measure subsurface properties including temperature and salinity by profiling to a depth of 1000m at a fixed location every 4 hours. Data are available in netCDF format.
S-MODE L2 Shipboard Bottle Data Version 1
공공데이터포털
This dataset contains in-situ seawater samples taken during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) conducted approximately 300 km offshore of San Francisco during a pilot campaign over two weeks in October 2021, and two intensive operating periods (IOPs) in Fall 2022 and Spring 2023. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. Water samples collected in Niskin bottles mounted on the ship’s rosette sampler were taken of chlorophyll (µg/L), phaeopigments (µg/L), and nutrient concentrations (µM or µmol/L) of particulate organic carbon, particulate organic nitrogen, silicate, nitrate, nitrite, and phosphate. Samples analyzed with fluorometry contain chlorophyll concentrations in µg/L and phaeopigment concentrations in µg/L. Samples analyzed with elemental analysis contain POC molarity in µM and PON molarity in µM. Samples analyzed via ion analysis contain silicate concentrations in µM, total nitrate+nitrite in µM, phosphate in µM, nitrite in µM, and nitrate in µM. These data are mainly used by S-MODE for validating the PRISM-derived products and calibrating the in-situ sensors on the autonomous platforms. Data are available in netCDF format.